Electrospun Polyester/Cyclodextrin Nanofibers for Entrapment of Volatile Organic Compounds

نویسندگان

  • Fatma Kayaci
  • Tamer Uyar
چکیده

Polyester (PET) nanofibers incorporating cyclodextrins (CD) were obtained via electrospinning. a-CD, b-CD, and c-CD were used to functionalize PET nanofibers. Beadfree PET/CD nanofibers were obtained from lower polymer concentration indicating that the incorporation of CD in polymer solution improved the electrospinnability of the PET nanofibers. XRD studies indicated that CD were distributed into nanofiber without forming crystalline aggregates. FTIR peak shift was observed possibly due to interaction between CD and PET. TGA confirmed that initial CD loading (25%, w/w) in the polymer solution was preserved for the PET/CD nanofibers. The presence of most of CD on the surface of PET/CD nanofibers was confirmed by XPS analysis and contact angle measurement. DMA results indicated that incorporation of CD improved the mechanical property of the nanofibers. Our studies showed that PET/CD nanofibers can effectively entrap aniline vapor as a model volatile organic compound (VOC) from surrounding owing to their very large surface area and inclusion complexation capability of CD. The entrapment efficiency of aniline vapor was found to be better for PET/c-CD nanofibers compared to PET/a-CD and PET/b-CD nanofibers. Our findings suggested that electrospun PET nanofibers functionalized with CD may be used as filtering material for removal of VOC in air filtration. POLYM. ENG. SCI., 54:2970–2978, 2014. VC 2014 Society of Plastics Engineers

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular entrapment of volatile organic compounds (VOCs) by electrospun cyclodextrin nanofibers.

In this paper, we reported the molecular entrapment performance of hydroxypropyl-beta-cyclodextrin (HPβCD) and hydroxypropyl-gamma-cyclodextrin (HPγCD) electrospun nanofibers (NF) for two common volatile organic compounds (VOCs); aniline and benzene. The encapsulation efficiency of CD samples were investigated depending on the various factors such as; CD form (NF and powder), electrospinning so...

متن کامل

Cyclodextrin short-nanofibers using sacrificial electrospun polymeric matrix for VOC removal

Cyclodextrins (CD) are cyclic oligosaccharides that can form noncovalent host–guest inclusion complexes to yield intriguing supramolecular structures. Electrospinning of nanofibers from CD is challenging since they are small molecules, nonetheless, electrospun nanofibers from CD would be particularly attractive because of the distinctive properties obtained by combining the very large surface a...

متن کامل

Electrospun Polyurethane/β-Cyclodextrin Composite Membranes for Aerosol Filtration and Adsorption of Volatile Organic Compounds from the Air

Introduction: Electrospun nanomembranes have been used for effective air filtration due to their potential for active surface modification. This study aims to synthesize polyurethane (PU) nanofiber membrane incorporated with different amounts of β-cyclodextrin (β-CD) to capture volatile organic compounds (VOCs) along with aerosol filtration from the air. Material and Methods: First, PU was sy...

متن کامل

Surface modification of electrospun polyester nanofibers with cyclodextrin polymer for the removal of phenanthrene from aqueous solution.

Surface modified electrospun polyester (PET) nanofibers with cyclodextrin polymer (CDP) were produced (PET/CDP). CDP formation onto electrospun PET nanofibers was achieved by polymerization between citric acid (CTR, crosslinking agent) and cyclodextrin (CD). Three different types of native CD (α-CD, β-CD and γ-CD) were used to form CDP. Water-insoluble crosslinked CDP coating was permanently ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014